
COP 3223: C Programming (Arrays – Part 1) Page 1 © Dr. Mark J. Llewellyn

COP 3223: C Programming

Spring 2009

Arrays In C – Part 1

School of Electrical Engineering and Computer Science

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cop3223/spr2009/section1

COP 3223: C Programming (Arrays – Part 1) Page 2 © Dr. Mark J. Llewellyn

Arrays In C
• Arrays are an elementary data structure found in most modern

programming languages. Arrays have a vast number of uses in

programming applications.

• Up to this point in the semester, the variables that we have used

in all of our programs have been scalar variables. Scalar

variables are capable of holding one data item (value) at a time.

• Arrays fall into the category of aggregate variables. Aggregate

variables are capable of holding a collection of variable values

at one time.

• Arrays are static, meaning that the size of the collection of

variable values that they are capable of holding remains fixed

throughout program execution.

COP 3223: C Programming (Arrays – Part 1) Page 3 © Dr. Mark J. Llewellyn

Arrays In C

• As with normal scalar variables, every array variable must

be declared to have some type.

• Every item in an array, must be of the same type. Thus,

the same array cannot contain both integers and real

numbers.

• The general form for declaring an array variable in C is:

type <var_name> [size];

where type is any C type, var_name is any legal

variable name in C, and size is any expression that

evaluates to an integer.

COP 3223: C Programming (Arrays – Part 1) Page 4 © Dr. Mark J. Llewellyn

Arrays In C

• Some example array declarations:

//defines an array of 100 integers

int anArray[100];

//defines an array of 30 doubles

double newValues[30];

//defines an array of 25 integers

int a = 5, b = 5;

int myNumbers[a * b];

COP 3223: C Programming (Arrays – Part 1) Page 5 © Dr. Mark J. Llewellyn

Arrays In C

• Think of an array as a group of memory locations related

by the fact that they all have the same name and the same

type.

• To refer to a particular location (i.e., variable) or element

of the array, you need to specify the name of the array and

the position number of the particular element within the

array.

• In C, the first element of an array is considered to be in

position 0, the second element of the array is considered to

be in position 1.

• Thus if we define int myArray[6]; the array contains

six positions numbered 0, 1, 2, 3, 4, and 5.

COP 3223: C Programming (Arrays – Part 1) Page 6 © Dr. Mark J. Llewellyn

Arrays In C

int aNumber;

A scalar variable

An aggregate variable

int anArray[4];

aNumber 269

anArray 145 -13 77 34

anArray[0]

anArray[1] anArray[2]

anArray[3]

COP 3223: C Programming (Arrays – Part 1) Page 7 © Dr. Mark J. Llewellyn

Arrays In C

• The position number of an array element is more formally

referred to as an array subscript or an array index.

• Thus, to refer to the first element of an array named

myArray you would use the notation myArray[0].

• In general, the ith element of an array is in the position

denoted by [i-1].

• In C, an array index must be an integer or any expression

that evaluates to an integer.

COMMON PROGRAMMING ERROR

It is a common mistake to make when referring to array elements to say something like,
the sixth element of an array named myArray is myArray[6], when in fact the sixth

element of the array would be myArray[5].

COP 3223: C Programming (Arrays – Part 1) Page 8 © Dr. Mark J. Llewellyn

Arrays In C

• Let’s create a simple program that creates and array of five

integers and then uses a simple loop to initialize the

locations in the array to zero.

COP 3223: C Programming (Arrays – Part 1) Page 9 © Dr. Mark J. Llewellyn

Notice that the loop runs

on a strictly < limit since

array index 5 is out of

bounds.

COP 3223: C Programming (Arrays – Part 1) Page 10 © Dr. Mark J. Llewellyn

Notice what happens if we

do not initialize the

elements of the array

before we print them out

(i.e., use them is some

fashion). See next page.

COP 3223: C Programming (Arrays – Part 1) Page 11 © Dr. Mark J. Llewellyn

The contents of the array

elements are impossible to

predict, since they are

referring to memory

locations that have not

been set by our program.

If you’ve ever heard the

term “computer garbage”,

this is it!

COP 3223: C Programming (Arrays – Part 1) Page 12 © Dr. Mark J. Llewellyn

Arrays In C

• There is also a shorthand technique to initialize the

elements of an array when the array is declared. The

technique is similar in nature to initializing a scalar

variable.

• Suppose we want all of an arrays elements to be initially

set to 0.

int myArray[10] = {0};

• The initial value for each element is placed in braces

following the assignment operator.

• In the case above all 10 elements of the array will be set to

0, since there are fewer initializers than there are locations

in the array.

COP 3223: C Programming (Arrays – Part 1) Page 13 © Dr. Mark J. Llewellyn

Arrays In C

int myNumbers[4] = {1,2,3,4};

• Sets the initial values in the array as:

myNumbers[0] = 1

myNumbers[1] = 2

myNumbers[2] = 3

myNumbers[3] = 4

• It is a syntax error to provide more initializers than there

are locations in the array. For example, above it we had

typed int myNumbers[4] = {1,2,3,4,5}; the

compiler would have issued a syntax error.

For cases where

there is more than

one initializer, the

values are comma

separated.

COP 3223: C Programming (Arrays – Part 1) Page 14 © Dr. Mark J. Llewellyn

Arrays In C

• Let’s create a simple program and creates and array of five

integers.

• It will ask the user to enter five integer values that we will

store in the array and then print out each integer the user

entered in the reverse order that they entered the values,

and then will produce the sum of those integers.

COP 3223: C Programming (Arrays – Part 1) Page 15 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Arrays – Part 1) Page 16 © Dr. Mark J. Llewellyn

Arrays In C

• It is also possible to create an array in C whose size is

determined by a symbolic constant.

• For example, if we define MAX as #define MAX 10

and then we define an array as int myArray[MAX];,

this will define an array of 10 integer elements.

• Using symbolic constants in this fashion makes your

program more scalable, since we can now change the size

of the array by simply changing the value assigned to the

constant MAX.

• The program on the next page, creates an array whose size

is determined by a constant, then the user is asked to enter

values into the array which are later summed.

COP 3223: C Programming (Arrays – Part 1) Page 17 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Arrays – Part 1) Page 18 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Arrays – Part 1) Page 19 © Dr. Mark J. Llewellyn

Small Case Study – How Arrays Are Useful

• We seen several examples of creating and using arrays so

far. We’ve seen how they are used to represent data and

how we can keep related data “together”, but can they also

save you time and effort when writing code?

• To answer this question we will write a C program to

solve the following problem using two different

approaches, one without using arrays and one that utilizes

arrays; and we’ll compare the differences in the code.

• The problem: We want to simulate a user rolling a normal

six-sided die 12,000 times. Each value should appear

approximately 2,000 times. We want to record the total

number of times each of the six possible values is rolled.

COP 3223: C Programming (Arrays – Part 1) Page 20 © Dr. Mark J. Llewellyn

Small Case Study – How Arrays Are Useful

• Before we continue with the case study, let’s take a brief aside

and look at random number generation in C.

• Most random number generation in C is done with the rand()

function found in <math.h>. This function returns a random

number between 0 and RAND_MAX, where RAND_MAX is a

symbolic constant defined to be the value of the maximum

integer on the machine (i.e., typically 231 – 1, or 32,767).

• For simulation purposes programs often need to generate

random numbers within a specific range of values. For

example to simulate rolling a die, we need only 6 random

values between 1 and 6.

COP 3223: C Programming (Arrays – Part 1) Page 21 © Dr. Mark J. Llewellyn

Small Case Study – How Arrays Are Useful

• To generate random numbers between 0 and RAND_MAX (not

inclusive by the way), you would simply call rand() as follows:

int x = rand();

• To generate random numbers between 0 and 50. Where 50 is
called the scaling factor, you would simply call rand() as

follows:

int x = rand() % 50;

• To generate random numbers between 1 and 50, you need both a

scaling factor of 50 and a shift factor of 1. You would then call
rand() as follows:

int x = 1 + rand() % 50;

• The program on the next page illustrates calling the rand()

function.

COP 3223: C Programming (Arrays – Part 1) Page 22 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Arrays – Part 1) Page 23 © Dr. Mark J. Llewellyn

Since rand() % 12

generates random numbers

between 0 and 11, the shift of

+4 means the generated

numbers will be between 4

and 15.

Since rand() % 12

generates random numbers

between 0 and 11, the

generated numbers will be

between 0 and 11 with no

shift.

COP 3223: C Programming (Arrays – Part 1) Page 24 © Dr. Mark J. Llewellyn

A Small Case Study - continues
• Now back to the case study… the first version of the code we’ll

write to solve the problem of rolling a standard die 12,000

times and seeing what the frequency of each value rolled, we’ll

do without using arrays.

• This will mean that we’ll need a separate variable for each of

the six possible values that could be rolled.

• The program on the next two pages (it wouldn’t fit on one

page) illustrates a solution to this problem without the use of

arrays

COP 3223: C Programming (Arrays – Part 1) Page 25 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Arrays – Part 1) Page 26 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Arrays – Part 1) Page 27 © Dr. Mark J. Llewellyn

Note that as we predicted, with equal probability,

each of the numbers was rolled about 2000 times.

COP 3223: C Programming (Arrays – Part 1) Page 28 © Dr. Mark J. Llewellyn

A Small Case Study - continues
• Now let’s rewrite the previous solution, but this time we’ll use

an array of integer values to hold the frequency of each face

value that is rolled in the corresponding position in the array.

• We’ll call this array back to the case study… the first version of

the code we’ll write to solve the problem of rolling a standard

die 12,000 times and seeing what the frequency of each value

rolled, we’ll do without using arrays.

• This will mean that we’ll need a separate variable for each of

the six possible values that could be rolled.

• The program on the next two pages (it wouldn’t fit on one

page) illustrates a solution to this problem without the use of

arrays.

• Notice how much “smaller” version 2 is compared to version 1.

COP 3223: C Programming (Arrays – Part 1) Page 29 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Arrays – Part 1) Page 30 © Dr. Mark J. Llewellyn

Notice that these values are

exactly the same as those

generated by version 1! Since

the numbers are supposed to

be random, why did this occur?

COP 3223: C Programming (Arrays – Part 1) Page 31 © Dr. Mark J. Llewellyn

Seeding the random number generator

so that the first random value

generated is based on the current

clock time on the computer on which

the program is running.

COP 3223: C Programming (Arrays – Part 1) Page 32 © Dr. Mark J. Llewellyn

Two different runs of case study version 2.

Notice that the frequency counters are

different, indicating that the sequence of

random numbers generated is not based

on the same starting (or seed) value, and

hence appears more random.

COP 3223: C Programming (Arrays – Part 1) Page 33 © Dr. Mark J. Llewellyn

Arrays In C
• This next example, illustrates a fairly common use for arrays.

In this case, two arrays are used, responses[], holds user

responses to a survey question where the user was asked to rank

something on a scale from 1 to 10; frequency[], is used to

hold the frequencies of the user responses. Thus,

frequency[i] holds the number of times the user responded

with i on the scale from 1 to 10.

• Notice on line 21 in the program how the array frequency is

indexed:

++frequency[response[answer]];

response[answer] will have a value between 1 and 10,

thus is the user’s response was 4, then the value in

frequency[4] will be incremented.

COP 3223: C Programming (Arrays – Part 1) Page 34 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Arrays – Part 1) Page 35 © Dr. Mark J. Llewellyn

COP 3223: C Programming (Arrays – Part 1) Page 36 © Dr. Mark J. Llewellyn

Practice Problems
1. Write a C program that reads in a maximum of 10 integers from

the keyboard and stores the integers in an array. Then using the
values in the array finds the smallest and largest number the user
entered. Assume that the user will enter the value -999 as a
sentinel value it they wish to enter less than 10 integers. Note
that the sentinel value is not considered to be one of the
numbers stored in the array.

COP 3223: C Programming (Arrays – Part 1) Page 37 © Dr. Mark J. Llewellyn

Practice Problems
2. Write a C program that creates two integer array each with a MAX number of

elements (assume MAX is defined to be 10), has the user enter MAX integer
values into each array. Then a third array is used to store the sums of the
values in the first two arrays on an element by element basis.

For example, if the arrays are named A, B, and Sum, then

Sum[0] = A[0] + B[0] and Sum[1] = A[1] + B[1]… and so
on.

COP 3223: C Programming (Arrays – Part 1) Page 38 © Dr. Mark J. Llewellyn

Practice Problems
3. Write a C program that creates and array holding a MAX number of elements

(assume MAX is defined to be 10), has the user enter MAX integer values
into the array. Then a second array is used to store three times the value in
the first array on an element by element basis.

For example, if the arrays are named A and B, then

B[0] = A[0] *3 and B[1] = A[1] * 3 … and so on.

COP 3223: C Programming (Arrays – Part 1) Page 39 © Dr. Mark J. Llewellyn

Practice Problems
4. Modify the frequency response program on page 20, so that

the 40 user responses are read from an input file named
“survey responses.dat”. Be sure to create this
file before you attempt to run your program since this is an
input file (i.e., you are reading from the file so it must pre-
exist).

5. Modify the program you just wrote for Practice Problem 4,
so that the maximum number of responses is defined to be
100, but any number from 1 up to 100 responses may be in
the file, but how many responses are in the file is unknown
in advance (i.e., you must detect end-of-file).

