Instructor : Dr. Mark Llewellyn
markl@cs.ucf.edu
HEC 236, 407-823-2790
http://www.cs.ucf.edu/courses/cop3223/spr2009/sectionl

School of Electrical Engineering and Computer Science
University of Central Florida

COP 3223: C Programming (Arrays — Part 1 Page 1 © Dr. Mark J. Llewellyn

Arrays In C

Arrays are an elementary data structure found in most modern
programming languages. Arrays have a vast number of uses in
programming applications.

Up to this point in the semester, the variables that we have used
In all of our programs have been scalar variables. Scalar
variables are capable of holding one data item (value) at a time.

Arrays fall into the category of aggregate variables. Aggregate
variables are capable of holding a collection of variable values
at one time.

Arrays are static, meaning that the size of the collection of
variable values that they are capable of holding remains fixed
throughout program execution.

¢

COP 3223: C Programming (Arrays —Part 1) Page2 © Dr. Mark J. Llewellyn g’);

Arrays In C

As with normal scalar variables, every array variable must
be declared to have some type.

Every item In an array, must be of the same type. Thus,
the same array cannot contain both integers and real
numbers.

The general form for declaring an array variable in C is:
type <var name> [size];

where type IS any C type, var name IS any legal
variable name in C, and size Is any expression that

evaluates to an integer.

”
COP 3223: C Programming (Arrays —Part 1) Page 3 © Dr. Mark J. Llewellyn g);

Arrays In C
Some example array declarations:

//defines an array of 100 integers

int anArray[100];

//defines an array of 30 doubles

double newValues[30];

//defines an array of 25 integers
int a =5, b =5;

int myNumbers[a * b];

COP 3223: C Programming (Arrays —Part 1) Page4 © Dr. Mark J. Llewellyn

Arrays In C

Think of an array as a group of memory locations related
by the fact that they all have the same name and the same

type.

To refer to a particular location (i.e., variable) or element
of the array, you need to specify the name of the array and
the position number of the particular element within the
array.

n C, the first element of an array is considered to be In
position 0, the second element of the array Is considered to
pe In position 1.

Thus If we define int myArray[6]; the array contains
six positions numbered 0, 1, 2, 3, 4, and 5.
#

COP 3223: C Programming (Arrays —Part 1) Page5 © Dr. Mark J. Llewellyn g’);

Arrays In C

A scalar variable

int aNumber; aNumber 295
An aggregate variable
int anArrayl[4]; anArray 145 -13 77 34

/

anArray[0]

anArray[1]

|

\

anArray|[3]

anArray[2]

COP 3223: C Programming (Arrays — Part 1) Page 6

© Dr. Mark J. Llewellyn 6

Arrays In C

The position number of an array element is more formally
referred to as an array subscript or an array index.

Thus, to refer to the first element of an array named
myArray Yyou would use the notation myArray[0] .

In general, the ith element of an array Is in the position
denoted by [i-1].

In C, an array index must be an integer or any expression
that evaluates to an integer.

COMMON PROGRAMMING ERROR

It is a common mistake to make when referring to array elements to say something like,
the sixth element of an array named myArray iISmyArray[6], when in fact the sixth
element of the array would be myArray[5].

#
COP 3223: C Programming (Arrays —Part 1) Page7 © Dr. Mark J. Llewellyn @j

Arrays In C

Let’s create a simple program that creates and array of five
Integers and then uses a simple loop to initialize the
locations in the array to zero.

BN Ch\Courses\COP 3223 - C Programming.. S

The numbersz in the array are:

COP 3223: C Programming (Arrays — Part 1) Page8 © Dr. Mark J. Llewellyn &*

1 Arrays — Part 1 - Simple Example 1 - Page 8
creates array of B Integers and i1nitializes =ach location to 0
‘using a for loop
‘February 12, 20089 Writfen by: Mark Llewvellyvn

Notice that the loop runs
#include <stdio.h> on a strictly < limit since
array index 5 is out of
int main() bounds.

28 =] A A La B

{

[
=

int myMNumber=s[5]:
int counter; JrAloop

-
Ba

[
TL

for (counter = 0; counter < 5; ++counter) {
myNumbers [counter] = 0;

-
[Y

Y/ /end for stmt
printf ("The numbers in the array are:\n\n"):
for (counter = 0; counter < 5; ++counter) {
printf ("myiumbers[$d] = %d\n", counter, myNumbers[counter]):

e
WO B0 =]
e

L = - -
e | —y E
snd ror SLCIML

b [a
= =

printf ("\n\n") ;
syvstem ("EFAUSE") ;
return 0;

24 }.'.'.:u.—a-\.' e e e W el s
Solied Il LI L il Lo

o Ba
Ld Ba

COP 3223: C Programming (Arrays —Part1) Page9 © Dr. Mark J. Llewellyn “

I [¥] Simple &rray Example - page 9.c

1 //Arravs - Part 1 - Simple Example 1 - Pags 9

2 //creates array of § integers and initiaslizes =ach
3 //fusing a for loop

4 //February 12, 2008 Written by: Mark Llewellyn
5

6 #include <stdio.h>

s

8 int main/()

21
18 int myNumbers([5]: //array to hold § integer
11 int counter;

Notice what happens if we
do not initialize the
elements of the array
before we print them out
(i.e., use them is some
fashion). See next page.

-
I
*

for (counter
14 myNumbers
15 1/ /end for stmt
16| =
17 printf ("The numbers in the array are:'n'\n"):

[y
=0

counter < 5; ++counter) {
zd\n", counter,

for (counter = 0;

printf ("myNumbers[3d] =

[y
=

28 Y//end for stmt
21
22 printf ("\n\n")

3]
(%]

system ("PLAUSE"™) ;
retorn 0:;

Ay ey
r L Uinisdle ALl

myNumbers [counter]) ;

COP 3223: C Programming (Arrays — Part 1) Page 10

© Dr. Mark J. Llewellyn

The contents of the array
elements are impossible to
| o o[predict, since they are
referring to memory

The numbers in the array are: locations that have not

been set by our program.
2000818489 A

B C\Courses\COP 3223 - C Programming\Sprin...

myNumhers [B]
mﬁ:ﬂ%::: EH If you’ve ever heard the
1 term “computer garbage”,
]

this is it!

myNumhers [3
myNumhers [4

Press any key to continue . . .

COP 3223: C Programming (Arrays —Part 1) Pagel1ll © Dr. Mark J. Llewellyn %ﬁf

Arrays In C

There 1s also a shorthand technique to Initialize the
elements of an array when the array is declared. The
technique Is similar In nature to Initializing a scalar
variable.

Suppose we want all of an arrays elements to be initially
set to 0.

int myArray[10] = {0};

The initial value for each element is placed In braces
following the assignment operator.

In the case above all 10 elements of the array will be set to
0, since there are fewer nitializers than there are locations
IN the array.

#

COP 3223: C Programming (Arrays — Part 1) Page 12 © Dr. Mark J. Llewellyn gpj'

Arrays In C

int myNumbers[4] = {1,2,3,4};

Sets the initial values in the array as: \

myNumbers [0] = 1
myNumbers[1l] = 2
myNumbers [2] = 3
myNumbers[3] = 4

For cases where
there is more than
one initializer, the
values are comma
separated.

It IS a syntax error to provide more initializers than there
are locations in the array. For example, above it we had
typed int myNumbers[4] = {1,2,3,4,5}; the

compiler would have issued a syntax error.

#
COP 3223: C Programming (Arrays — Part 1) Page 13 © Dr. Mark J. Llewellyn @j

Arrays In C

Let’s create a simple program and creates and array of five

Integers.

It will ask the user to enter five integer values that we will
store in the array and then print out each integer the user
entered In the reverse order that they entered the values,

and then will produce the sum of those integers.

=8 C-\Courses \COP 3223 - C Programming\Sp... L=l Sl .S

Pleaze enter 5 integer values

The numbers in reverse order are:
3

7
g
&
Ed

The =z=um of these numbhewrs is: 29

Press any key to continue . . .

COP 3223: C Programming (Arrays —Part 1) Page 14 © Dr. Mark J. Llewellyn

Simple Array Example - page 9.c

Simple &rray Example - page 15.¢

4 Februasry 12, 2008 Fritten by: Mark Llevellvn

5

b #include «<=tdio.h>

7

8 int main{()

? {

16 int myumber=[5] : Siarray to heold §F integers

11 int enteredvValus; SAinteger valuse sntersd by usser
12 int sum = 0; //sum of the wvalues in the array

13 int counter; ' Aloop counter

14

15 printf ("Flease enter 5 integer wvalussno") :

16 for (counter = 0; counter < 5; +4++counter) {

17 scanf ("Ed", &enteredValus=) :

18 myliumbers [counter] = enteredValue;

19 Y/ end for stmt

20 printf (""nThe numbers in reverse order are:\n"):
21 SAorint the user sentersed numbers 1n reverss order
22 for (counter = 4; counter »= 0; —--—counter) {

23 printcf(":dw\n", myNumbers[counter]) :

24 sum += mylNumbers[counter] ;

25 Y/ Send for stmt

26 printf (""nThe =um of these numbhers iz: T4AWn™, =um) ;
2%

28 printf ("\n\n") ;

29 system ("PLUSE"™) ;

3a retorn 0;

31 }//end main function

COP 3223: C Programming (Arrays — Part 1)

Page 15

© Dr. Mark J. Llewellyn

Arrays In C

It Is also possible to create an array in C whose size Is
determined by a symbolic constant.

For example, if we define MAX as #define MAX 10
and then we define an array as int myArray[MAX] ;,

this will define an array of 10 integer elements.

Using symbolic constants in this fashion makes your
program more scalable, since we can now change the size
of the array by simply changing the value assigned to the
constant MAX.

The program on the next page, creates an array whose size
IS determined by a constant, then the user is asked to enter

values into the array which are later summed.
#

COP 3223: C Programming (Arrays — Part 1) Page 16 © Dr. Mark J. Llewellyn @3'

[F] Array Example - sums - page 17.c

$include <stdic.h>
$define MZX 10

int main()

int myNumbers[M&X] = {0}; J/Sarray to hold up to MAX integers

int enteredValue; /Sinteger valus entersd by user

int sum = 0; //sum of the valuss in the array

int i; //loop counter

int counter = 0; /Sus=ed to count valuss =ntered by user

printf ("Flease enter between 1 and %4 integer wvalues: (use -99%% to stop)’\n", MAX):

zcanf ("%4", &enteredValue):

while (enteredValue !'= -933)
myNunbers [counter] = enteredValue;
counter++:
scanf ("%d4d", &zenteredValue);

Y//end wvhile stmt

printf ("\nThe sum of the numbers you ent

m
]
m
kL
I
i1}
e

for (i = 0; i < counter; i++)
sum += myNumnbers[i]:

Y//end for stmt

printf ("2d\n", sum):;

printf ("\n\n")

system ("EFLTIE") ;

retorn O;

O . | [— [- - -
}_." & 2nd MmMaln J.uj...:':J.:'h.

COP 3223: C Programming (Arrays —Part 1) Page 17 © Dr. Mark J. LIewellyn

i K:\COP 3223 - Spring 2009\COP 3

lease enter hetween 1 and 18 integer values: (use -999 to stop)

299

he sum of the numbers you entered is: 20

Press any key to continue . . .

COP 3223: C Programming (Arrays — Part 1) Page 18 © Dr. Mark J. Llewellyn

Small Case Study — How Arrays Are Useful

We seen several examples of creating and using arrays so
far. We’ve seen how they are used to represent data and
how we can keep related data “together”, but can they also
save you time and effort when writing code?

To answer this question we will write a C program to
solve the following problem using two different
approaches, one without using arrays and one that utilizes
arrays; and we’ll compare the differences in the code.

The problem: We want to simulate a user rolling a normal
six-sided die 12,000 times. Each value should appear
approximately 2,000 times. We want to record the total
number of times each of the six possible values is rolled.

’

COP 3223: C Programming (Arrays — Part 1) Page 19 © Dr. Mark J. Llewellyn @3'

Small Case Study — How Arrays Are Useful

Before we continue with the case study, let’s take a brief aside
and look at random number generation in C.

Most random number generation in C is done with the rand ()
function found in <math.h>. This function returns a random
number between 0 and RAND MAX, where RAND MAX IS a
symbolic constant defined to be the value of the maximum
integer on the machine (i.e., typically 231 — 1, or 32,767).

For simulation purposes programs often need to generate
random numbers within a specific range of values. For
example to simulate rolling a die, we need only 6 random
values between 1 and 6.

’

COP 3223: C Programming (Arrays — Part 1) Page 20 © Dr. Mark J. Llewellyn @3'

Small Case Study — How Arrays Are Useful

To generate random numbers between 0 and RAND MAX (not
Inclusive by the way), you would simply call rand () as follows:

int x = rand();

To generate random numbers between 0 and 50. Where 50 is
called the scaling factor, you would simply call rand() as

follows:

O

int x = rand() % 50;

To generate random numbers between 1 and 50, you need both a
scaling factor of 50 and a shift factor of 1. You would then call
rand () as follows:

int x =1 + rand() % 50;

The program on the next page illustrates calling the rand ()
function.

#
COP 3223: C Programming (Arrays — Part 1) Page 21 © Dr. Mark J. Llewellyn @j

I

] random number generation example.c

12 #include <stdio.h>
13 #include «<math.h>
14 #define ¥ 4

1% #define ¥ 12

16

17 int main()

18 {
19
28
21

LOOpD Counter

int i;

printf ("\n™) ;

printf ("\n") ;
printf("s0

31
32

random

33 for ([i = 1; i <= 507 i++) {7/
34 A fgenerage a random numbesr
35 +

printf({ "%104d", X

r
1LO0D Councer

numbers bhetween

(rand() ¥ Y) }-

36 PV =r is divisikles by 5, kb
37 if (i § 5 =0} {

38 printE({ "\n™)

32 Y//end if stmt

48 Y//end for stmt

22 printf ("50 random numbers between [0 and 4)\a", ¥):

23 for (i = 1; i == 50 i4+4+) | genserate 20 random numbers i1n the rang
24 S Sgenerage 8 random numbsr betweson O and ¥ and print 1t

25 printf("10d", [rand() F ¥)):

26 S 1F leoop counter is divisikle by b, begin nev linse of output

27 if (1 % 5 =0) {

28 printE("\n"™) :

29 Y//end if stmt

38 Y/ end for stmt

and %d) shifted %d positionsi\n"
.]

- I = -
5 1n Che ran

4 | 1

COP 3223: C Programming (Arrays — Part 1)

Page 22

© Dr. Mark J. Llewellyn

m

o 37

CACourses\COP 3223 - C Programming\Spring 2009\COP 3223 Program Files..' =

58 random numbers between [B and 12>
11 1A

Since rand () % 12
generates random numbers
between 0 and 11, the
generated numbers will be
between 0 and 11 with no
shift.

[y
i D O D) ek T ek S0 LF

1

[y
=Nl ey e e e N ey
CF el =T O [od w0 G L (D

b
1
2
2
8
1
?
2
?

hetween [A and 12> shifted 4 positions
12 14 13
15 13
b
b
b
13 Since rand () % 12

1“?1 generates random numbers

6 between 0 and 11, the shift of
1A +4 means the generated
numbers will be between 4

and 15.

COP 3223: C Programming (Arrays — Part 1) Page 23 © Dr. Mark J. Llewellyn

A Small Case Study - continues

Now back to the case study... the first version of the code we’ll
write to solve the problem of rolling a standard die 12,000
times and seeing what the frequency of each value rolled, we’ll
do without using arrays.

This will mean that we’ll need a separate variable for each of
the six possible values that could be rolled.

The program on the next two pages (it wouldn’t fit on one

page) illustrates a solution to this problem without the use of
arrays

”
COP 3223: C Programming (Arrays — Part 1) Page 24 © Dr. Mark J. Llewellyn g);

J random nurmber generation example.c caze study version 1.c

SAAArrays In € — Part 1 - Case Study - Version 1

SAsimulate rolling 8 standard six-sided dis 12000 times

Afand record the total number of times =sach of the six valuss was rolled.
#include <stdio.h>

#include <math.h>

int main()

i
int frequencyl = 0; /) rolled 1 counter
int frequencyZ = 0; /) rolled £ counter
int frequency3 = 0; /) rolled 7 counter
int frequencyd4 = 0; /) rolled £ counter
int frequency = 0; /) rolled 5 counter
int frequencye = 0; /) rolled & counter
int roll: // total number of rolls counter, wvalu=s 1 te 12000
int face;)/ represents one roll of the dis, valus 1 to &
Y roll die 12000 times and summarize results
for (roll = 1; roll <= 12000; roll++) {
face = 1 + rand() % 6&; // random number from 1 to &
S determine face walue and Increment appropriste counter
switch (face) {
case 1: // rolled 1
++frequencyl;
break:
case 2: /) rolled =2
++frequencysd ;
break:

COP 3223: C Programming (Arrays — Part 1)

Page 25 © Dr. Mark J. Llewellyn

random number generation example.c [*] casze study version 1.c

38
31
32
33
34
35
36
37
38
39
48
41
42
43
44
45
46
4°7
48
49
=5
o1
02
53
h4
55
L6
oY

-

case 3I:) rolled 3
++freguencyi;
break:

case 4: S/ rolled
++freguencyad;
break:

i,

n

case 5: /) rolled
++freguencys:
break:

casse b S roll=sd &
++freguencye;
break:

s
- b
Con S

printf ("Face %%t Fregquencyi\n"):

printf("-——— %\T ————————— Yo'y

printcf (™ 1%\t:7d\n", frequencyl):
printf (™ Z%\t:T7d\n", fregquency2):
printf (" 3x%t:7d4d\n", frequency3):
printf (" 4%\t:7d\n", fregquency4):
printf (™ 5%\t:7d\n", fregquency5):
printf (" &%\t:7d\n", freguencye) :

printf ("\n\n") ;
system ("EFLAUTOISE"™) ;
retorn 07

[~
.

e .
Y end m J. Eion

\]]
5
0y

- -
i

COP 3223: C Programming (Arrays — Part 1)

Page 26

© Dr. Mark J. Llewellyn

= K:\NCOP 3223 - Spring

2884
1275
2851
2817
1262

Press any key to continuwe . . .

Note that as we predicted, with equal probability,
each of the numbers was rolled about 2000 times.

COP 3223: C Programming (Arrays — Part 1) Page 27 © Dr. Mark J. Llewellyn

A Small Case Study - continues

Now let’s rewrite the previous solution, but this time we’ll use
an array of integer values to hold the frequency of each face
value that is rolled in the corresponding position in the array.

We’ll call this array back to the case study... the first version of
the code we’ll write to solve the problem of rolling a standard
die 12,000 times and seeing what the frequency of each value
rolled, we’ll do without using arrays.

This will mean that we’ll need a separate variable for each of
the six possible values that could be rolled.

The program on the next two pages (it wouldn’t fit on one
page) illustrates a solution to this problem without the use of
arrays.

Notice how much “smaller” version 2 is compared to versio
#

COP 3223: C Programming (Arrays — Part 1) Page 28 © Dr. Mark J. Llewellyn @3'

randaomn number generation example. c I casze study verzion 1. [] caze study verzion 2.c

-

3 //and record the total number of times =ach of the six values was rolle
E

D #include <=stdio.h>

b #include <math.h>

Y #define S5IZE 7

8

? int maini()

18 {

11 int face; ///random di=e wvalu=s 1 - &

12 int roll; //roll counter

13 int frequency|[SIZE] = { 0 }r /. 1nitislize freguency counters
14|

15 A4 roll die 12000 times and generate freguenciss
16 for ([roll = 1; roll <= 12000; roll++) {

17 face = 1 + randi) % A

18 ++freguency [face] ;s /) replaces the swvitech stmt in version 1
19 YSend for stmt
20 printf("wnhWtFace %%t Fregquencyiyn™) ;
21 princf(""t———— FHT ————————— W'y o
22 A4 output freguency =lements 1-6& in tabular format
23 for (| face = 1; face « SIZE; face++ |} {
24 princf("“tcEd4dhcEaedwvn", face, freguency[face]):
25 Y/ /=2nd for stmt
26
27 princf(™Ynhn™) ;
28 system("PLTIE™) ;
27 retorn 0;
38 }//=nd main function
31

COP 3223: C Programming (Arrays —Part 1) Page 29 © Dr. Mark J. Llewellyn

"y H:“:ﬂp 3113‘ m ﬁ] - O} X

Frequency

2004
1975

2051

Y319 Notice that these values are
1962 exactly the same as those
generated by version 1! Since
the numbers are supposed to

. be random, why did this occur?
ress any key to continue . . .

w
q b
k(
COP 3223: C Programming (Arrays —Part 1) Page 30 © Dr. Mark J. Llewellyn \@/

random number generation example. c] case study verzion 1.c case study verzion 2.c

i e 3 I 7 SRS Fo
3 //and record the total number of

D #include «<=ztdio.h>

b #include {math.h?*””,,’—””””—
Y #include <time.h

B £define

AT}

— — —_—

SIZE

9 clock time on the computer on which
18 int main(} the program is running.

11 {

12 int face: J/rand die walus 1 — &

13 int roll; |, 1 counter

14 int frequen [STIZE] = { 0 ¥r / initigli=ze fregquency counters
15| srand(cime(NULL)): ../ seed random—number genserator

16

17 A roll die 12000 times and generate freguencies

i8 for (roll = 1; Toll <= 1Z2000; roll4+)} {

i9 face = 1 4+ randi() % &:

28 ++frequency [face]; /) replace the switch stmt Iin wversion 1
21 Y Aend for stmt

22 princf("\n\tFace %\t Frequencvin™) ;

23 princf("\tc——— WL ————————— Ty :

24 A4 outpot fregusncy =lements 1-§ 1in takbolsr format

25 for (| face = 1; face « SIZE; face++) {

26 printcf({ "wcE4dhcE2aedvn", face, fregquency[face])

2% Y Aend for stmt

28

29 printf ("Ywnn™) ;

28 system | "PLTUSE™) »

21 retorn 0;

Seeding the random number generator
so that the first random value
generated is based on the current

COP 3223: C Programming (Arrays — Part 1)

Page 31

© Dr. Mark J. Llewellyn

cv KACOP 3223 -

Frequency

1973
2020
2841
2868
1932

ress any key to continue .

o | K Two different runs of case study version 2.

Notice that the frequency counters are
different, indicating that the sequence of
random numbers generated is not based
on the same starting (or seed) value, and
hence appears more random.

1955
2833
2849
2823
1999

Prezs any key to continue .

COP 3223: C Programming (Arrays —Part 1) Page 32 © Dr. Mark J. Llewellyn \Q/

Arrays In C

This next example, illustrates a fairly common use for arrays.
In this case, two arrays are used, responses[], holds user

responses to a survey question where the user was asked to rank
something on a scale from 1 to 10; frequency[], IS used to

hold the frequencies of the user responses. Thus,
frequency [i] holds the number of times the user responded
with i on the scale from 1 to 10.

Notice on line 21 in the program how the array frequency IS
Indexed:

++frequency| responsel[answer]];

response [answer] Will have a value between 1 and 10,

thus i1s the wuser’s response was 4, then the value In
frequency [4] will be incremented.

’

COP 3223: C Programming (Arrays — Part 1) Page 33 © Dr. Mark J. Llewellyn @3'

responze frequency example.c

L #include <stdio.h> Eﬂ
b #define RESPONSE S5IZE 40 // define array sizes
¢ #define FREQUENCY S5IZE 11 //repsonse valuss are 1..10, position 0 used to hold sum

8

? int malintmain

18 !

11 int answer; // counter to loop through 40 responses

12 int rating; // counter to loop through fregquencises 1-10

13 int sum = 0; //sum of all responses

14 int frequency[FREQUENCY SIZE) = { 0 }2 //initialize frequency counters to 0
15 int responses[RESPONSE SIZE] = { 1, 3, &, 4, & 5, 9, 7, 8, 10,

16 1, &, 4, 8, &, 10, 8, &, 2, 5, &, 5, 7, €, &, &, 7, 5, &, &,

17 5, &, 7, 5, 7, 7, 8, &, 8, 10 }: //initializZe response Array

18 A4 for each response, use that values a5 an index i1n the freguency array

19 A4 to determine which frequency to increment. Also add value to sum. =
28 for (answer = 0; answer < RESPONSE 5IZE; answer++) {

21 ++frequency|[responses [answer]]:

22 sSum += responses[answer]:

23 Y// end for stmt

24 printf("%=%t%%=2\n", "Eating", "Frequency");

25 printf("$=\t%9z4\n", "-————o mm "y

26 /¢ output the frequencies in & tabular format

27 for (rating = 1; rating < FREQUENCY S5IZE; rating++) {

28 printf ("%4d\t%5d\n", rating, frequency[rating]):

29 }//end for stmt

3a printf ("\nThe average of all responses was: %6.3f", (float)sum/RESPONSE 5IZE);
31 printf ("\nh\n"); system("PLUSE") ; retorn 0;

32 Y/ =nd main functkian

COP 3223: C Programming (Arrays —Part 1) Page 34 © Dr. Mark J. Llewellyn

e K:\COP 3223 - Spring

ating Freqguency

1 2
2 1
3 1
4 2
o 6
b F)
7 b
8 8
9 1
A 3

1

he average of all »esponses was:

Press any key to continue . . .

COP 3223: C Programming (Arrays —Part 1) Page 35 © Dr. Mark J. Llewellyn

Practice Problems

Write a C program that reads in a maximum of 10 integers from
the keyboard and stores the integers in an array. Then using the
values in the array finds the smallest and largest number the user
entered. Assume that the user will enter the value -999 as a
sentinel value it they wish to enter less than 10 integers. Note
that the sentinel value is not considered to be one of the
numbers stored In the array.

g C:\Courses\COP 3223 - C Programming\Spring 2009\COP 3223 Prog,.. L=l o(=l e |

Enter between 1 and 18 integer values
EMTER —22?9 to stop if entering less than 18 numhers):

[3]

=]

ll
2
8
7
?

smallest value is: 2
The largest value is:- 9

Preszsz any key to continuwe . . .

COP 3223: C Programming (Arrays —Part 1) Page 36 © Dr. Mark J. Llewellyn %ﬁf

Practice Problems

Write a C program that creates two integer array each with a MAX number of
elements (assume MAX is defined to be 10), has the user enter MAX integer
values into each array. Then a third array is used to store the sums of the
values in the first two arrays on an element by element basis.

For example, if the arrays are named 2, B, and Sum, then

Sum[0] = A[0] 4+ B[0] and Sum[1l] = A[1l] + B[1l].. and so
on.

BN Ch\Courses\COP 3223 - C ProgrammingtSpring 2009\COP 3223 P... |E|E|—E_hj

Enter 18 integer values (left arguments to (x + yl:
256 7 %15 46 5 -9 55

Enter 18 integer values {right arguments to <x + y):
7 7 84 69 33 86 44 16 -7 66

value of
value
value
value
value
value
value
value
value
value

A

COP 3223: C Programming (Arrays — Part 1) Page 37 © Dr. Mark J. Llewellyn &*

Practice Problems

Write a C program that creates and array holding a MAX number of elements
(assume MAX Is defined to be 10), has the user enter MAX integer values
Into the array. Then a second array is used to store three times the value in
the first array on an element by element basis.

For example, if the arrays are named A and B, then
B[0] = A[0] *3 and B[1l] = A[1l] * 3 .. andsoon.

& C\Courses\COP 3223 - C Programmin... (== e

Enter 18 integer values
22 -8 36 12 9 -7 42 25 33

165
276

the value 55
the value 22
the value —8 —24
the value 36 148
the value 12 J6
the value ¢ = 27
—21
126
75
o9

the value —7
the value 42
the value 25
the value 33

Pre=z=s any kew to continue . . .

COP 3223: C Programming (Arrays —Part 1) Page 38 © Dr. Mark J. Llewellyn g’)i

Practice Problems

Modify the frequency response program on page 20, so that
the 40 user responses are read from an input file named

“survey responses.dat”. Be sure to create this
file before you attempt to run your program since this is an
input) file (i.e., you are reading from the file so it must pre-
exist).

Modify the program you just wrote for Practice Problem 4,
so that the maximum number of responses is defined to be
100, but any number from 1 up to 100 responses may be In
the file, but how many responses are in the file is unknown
In advance (i.e., you must detect end-of-file).

’

COP 3223: C Programming (Arrays — Part 1) Page 39 © Dr. Mark J. Llewellyn @3'

